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The Simple Linear Regression Model



Learning Objectives

1. Describe the simple linear regression model and the constituent
components.

2. Understand the normal assumptions for the simple linear
regression model.





Regression Models

▶ We have discussed models which compare two different
populations against one another.

▶ It is often of interest to consider the relationship between two
different variables

▶ The effect of treatment on a health outcome.

▶ Housing factors influencing the cost of a home.

▶ Material treatments to influence its durability.

▶ When we are interested in describing this relationship directly,
we typically use regression models.



Regression Models

▶ We have discussed models which compare two different
populations against one another.

▶ It is often of interest to consider the relationship between two
different variables

▶ The effect of treatment on a health outcome.

▶ Housing factors influencing the cost of a home.

▶ Material treatments to influence its durability.

▶ When we are interested in describing this relationship directly,
we typically use regression models.



Regression Models

▶ We have discussed models which compare two different
populations against one another.

▶ It is often of interest to consider the relationship between two
different variables
▶ The effect of treatment on a health outcome.

▶ Housing factors influencing the cost of a home.

▶ Material treatments to influence its durability.

▶ When we are interested in describing this relationship directly,
we typically use regression models.



Regression Models

▶ We have discussed models which compare two different
populations against one another.

▶ It is often of interest to consider the relationship between two
different variables
▶ The effect of treatment on a health outcome.

▶ Housing factors influencing the cost of a home.

▶ Material treatments to influence its durability.

▶ When we are interested in describing this relationship directly,
we typically use regression models.



Regression Models

▶ We have discussed models which compare two different
populations against one another.

▶ It is often of interest to consider the relationship between two
different variables
▶ The effect of treatment on a health outcome.

▶ Housing factors influencing the cost of a home.

▶ Material treatments to influence its durability.

▶ When we are interested in describing this relationship directly,
we typically use regression models.



Regression Models

▶ We have discussed models which compare two different
populations against one another.

▶ It is often of interest to consider the relationship between two
different variables
▶ The effect of treatment on a health outcome.

▶ Housing factors influencing the cost of a home.

▶ Material treatments to influence its durability.

▶ When we are interested in describing this relationship directly,
we typically use regression models.



The Deterministic Linear Model

▶ The simplest deterministic relationship between two variables
is a straight line.

▶ We can write y = β0 + β1x to describe any linear relationship between y
and x .

▶ y is considered the response or dependent variable.
▶ x is considered the predictor or independent variable.
▶ β0 is the intercept for the line.
▶ β1 is the slope for the line.

▶ The simple linear regression model takes this, and makes it
probabilistic.
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The Linear Regression Model

▶ Instead of considering y and x fixed, we take them to be
random quantities.

▶ We write that

Y = β0 + β1X + ϵ.
▶ Y , X , β0, and β1 are as they were in the deterministic model.
▶ ϵ is the noise term, which makes these quantities random.

▶ Note that E [Y |X = x ] = β0 + β1x .

▶ The deterministic model is taken as a model for mean of Y .
▶ The randomness comes from ϵ.
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Normality Assumptions

▶ Often we will assume that ϵ ∼ N(0, σ2).

▶ It is not strictly necessary to do this for the techniques to function well.

▶ If this assumption is made then we have that Y |X ∼ N(β0 + β1X , σ2).

▶ It is common, and unrestrictive, to assume that E [ϵ] = 0.

▶ We typically assume that ϵ ⊥ X .

▶ If we have values for x , and estimates of β0 and β1, then we can
predict values of Y .

▶ If we assume normality, we can also predict intervals around these
predictions.



Normality Assumptions

▶ Often we will assume that ϵ ∼ N(0, σ2).
▶ It is not strictly necessary to do this for the techniques to function well.

▶ If this assumption is made then we have that Y |X ∼ N(β0 + β1X , σ2).

▶ It is common, and unrestrictive, to assume that E [ϵ] = 0.

▶ We typically assume that ϵ ⊥ X .

▶ If we have values for x , and estimates of β0 and β1, then we can
predict values of Y .

▶ If we assume normality, we can also predict intervals around these
predictions.



Normality Assumptions

▶ Often we will assume that ϵ ∼ N(0, σ2).
▶ It is not strictly necessary to do this for the techniques to function well.

▶ If this assumption is made then we have that Y |X ∼ N(β0 + β1X , σ2).

▶ It is common, and unrestrictive, to assume that E [ϵ] = 0.

▶ We typically assume that ϵ ⊥ X .

▶ If we have values for x , and estimates of β0 and β1, then we can
predict values of Y .

▶ If we assume normality, we can also predict intervals around these
predictions.



Normality Assumptions

▶ Often we will assume that ϵ ∼ N(0, σ2).
▶ It is not strictly necessary to do this for the techniques to function well.

▶ If this assumption is made then we have that Y |X ∼ N(β0 + β1X , σ2).

▶ It is common, and unrestrictive, to assume that E [ϵ] = 0.

▶ We typically assume that ϵ ⊥ X .

▶ If we have values for x , and estimates of β0 and β1, then we can
predict values of Y .

▶ If we assume normality, we can also predict intervals around these
predictions.



Normality Assumptions

▶ Often we will assume that ϵ ∼ N(0, σ2).
▶ It is not strictly necessary to do this for the techniques to function well.

▶ If this assumption is made then we have that Y |X ∼ N(β0 + β1X , σ2).

▶ It is common, and unrestrictive, to assume that E [ϵ] = 0.

▶ We typically assume that ϵ ⊥ X .

▶ If we have values for x , and estimates of β0 and β1, then we can
predict values of Y .

▶ If we assume normality, we can also predict intervals around these
predictions.



Normality Assumptions

▶ Often we will assume that ϵ ∼ N(0, σ2).
▶ It is not strictly necessary to do this for the techniques to function well.

▶ If this assumption is made then we have that Y |X ∼ N(β0 + β1X , σ2).

▶ It is common, and unrestrictive, to assume that E [ϵ] = 0.

▶ We typically assume that ϵ ⊥ X .

▶ If we have values for x , and estimates of β0 and β1, then we can
predict values of Y .

▶ If we assume normality, we can also predict intervals around these
predictions.



Normality Assumptions

▶ Often we will assume that ϵ ∼ N(0, σ2).
▶ It is not strictly necessary to do this for the techniques to function well.

▶ If this assumption is made then we have that Y |X ∼ N(β0 + β1X , σ2).

▶ It is common, and unrestrictive, to assume that E [ϵ] = 0.

▶ We typically assume that ϵ ⊥ X .

▶ If we have values for x , and estimates of β0 and β1, then we can
predict values of Y .
▶ If we assume normality, we can also predict intervals around these

predictions.



Scatterplots

▶ A scatterplot is perhaps the most common type of plot

▶ For bivariate data, we simply plot each datapoint at the
corresponding location on the (x , y) plane.

▶ Scatterplots are useful for determining the relationship between
two different variables, and in particular, assessing whether a
specified relationship looks reasonable.

▶ In our case: does it seem like a straight line would fit the data
well?
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Summary

▶ Linear relationships are the simplest relationships to capture
dependency between two variables.

▶ The linear regression model adds randomness through the use
of an error term.

▶ We can use scatterplots to assess the linearity of a relationship
(and perhaps to find transformations that make it more linear!).
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